

Note

Synthesis of 2-alkyl/arylalkyl/phenacylsulfanyl-1-thia-3,3a,10-triaza-pentaleno[1,2-b]naphthalene-4,9-dione

V Srinivas & V Rajeswar Rao*

Department of Chemistry, National Institute of Technology,
Warangal 506 004, India

E-mail: vrajesw@yahoo.com

Received 3 December 2008; accepted (revised) 10 September 2009

2,3-Dichloronaphthoquinone is condensed with 5-(alkyl/arylalkyl/phenacylthio)-1,3,4-thiadiazol-2-amine in acetic acid to furnish a novel and hitherto unknown 2-alkyl/aralkyl/phenacylsulfanyl-1-thia-3,3a,10-triaza-pentaleno[1,2-b]naphthalene-4,9-dione. The structure of the synthesized compound has been confirmed by converting it into the corresponding reductive acetate. The structures of newly prepared compounds have been confirmed by analytical and spectral data

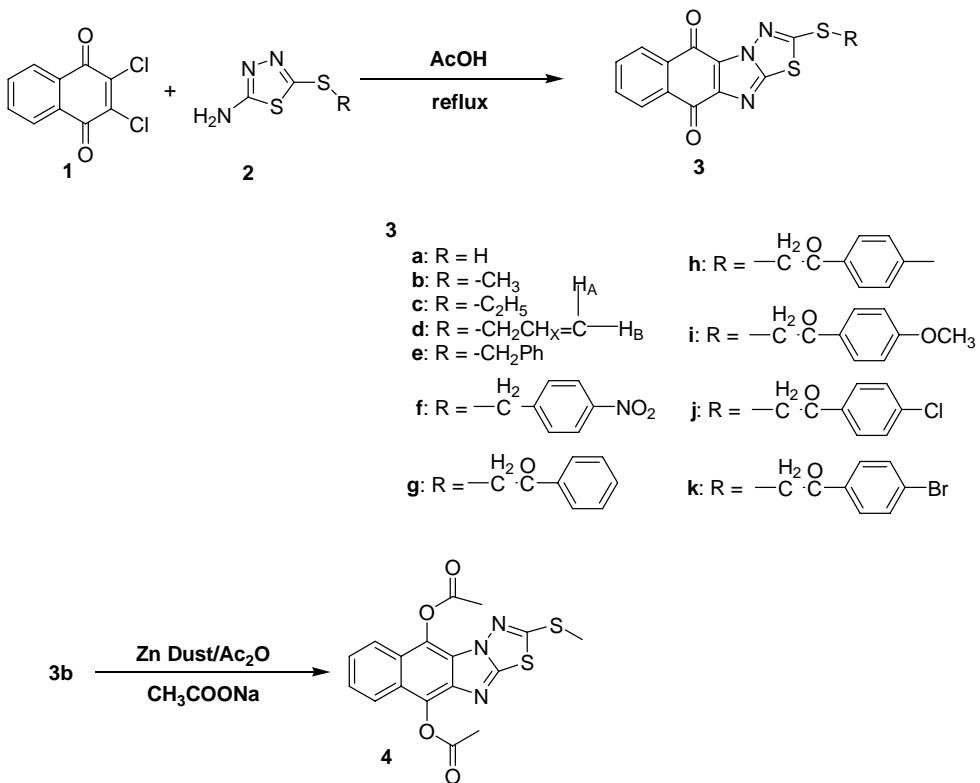
Keywords: 2,3-Dichloronaphthoquinone, thiadiazole, reductive acetylation

The quinone moiety is involved in a wide variety of biochemical processes including electron transport and oxidative phosphorylation¹. Various biological properties including enzyme inhibition, antibacterial, antifungal, and anticancer activities have been reported for quinones and quinone derivatives²⁻⁹. The antitumor activity of the quinone moiety has been thoroughly studied and it is known that they act as topoisomerase inhibitors *via* the DNA-intercalation¹⁰⁻¹² and the reduction of the quinone moiety by DT-diaphorase (quinone oxidoreductase)¹³⁻¹⁵. In continuation of the earlier work^{16,17} on the naphthoquinones, in this communication is reported the synthesis of 2-substituted sulfanyl-1-thia-3,3a,10-triaza-pentaleno[1,2-b]naphthalene-4,9-diones.

The required starting material 5-thiol-1,3,4-thiadiazole-2-amino was prepared by a known procedure¹⁸ and treated with different alkyl, aralkyl and phenacyl halides in KOH solution to yield the corresponding thioethers **2** (Ref. 19).

A series of 2-alkyl/aralkyl/phenacylsulfanyl-1-thia-3,3a,10-triaza-pentaleno[1,2-b]naphthalene-4,9-diones **3** have been prepared by the condensation of 2,3-dichloronaphthoquinone **1** with 5-(alkylthio)-1,3,4-thiadiazol-2-amines **2** in glacial acetic acid. They also

revealed the presence of quinone moiety by the reduction and aerial oxidation test with Zn/AcOH. Compound **3b** on reductive acetylation gave the corresponding reductive acetate **4** (**Scheme I**).


The IR spectrum of **3a** displayed bands in the region 1157 (-C=S), 1557 (C=C), 1587 (-C=N-), 1678 (-C=O), and 2840 cm⁻¹ (SH weak). The ¹H NMR (CDCl₃) spectrum of **3a** displayed characteristic singlet at δ 1.25 assignable to SH group and two complex multiplets centered at δ 7.8 and 8.2 for the four aromatic protons. In mass spectrum of **3a**, the molecular ion was detected at *m/z* 287. The IR spectrum of **4** displayed a peak at 1771 (ester carbonyl), 1496(-C=N-) cm⁻¹. The ¹H NMR (CDCl₃) spectrum of **4** displayed singlet at δ 2.50 (-CH₃ of acetyl group) and the aromatic protons appeared as complex multiplets at δ 7.6 and 7.8. Compound **4** exhibited molecular ion peak at *m/z* 387 (M⁺).

Experimental Section

All reagents and solvents were purchased from commercial sources and used as received unless otherwise stated. Melting points were determined in open capillaries with a Cintex melting point apparatus, Mumbai, India. Melting points are uncorrected and CHNS analysis was performed using Carlo Erba EA 1108 automatic elemental analyzer. The homogeneity of the compounds was checked using TLC plates (E. Merck, Mumbai, India), IR spectra (KBr) were recorded on a Bruker WM-4(X) spectrometer (577 model). ¹H NMR spectra were recorded on a Bruker WM-300 MHz spectrometer (δ , ppm) using TMS as internal standard. Mass spectra (EI-MS) were determined on Perkin-Elmer (SCIEX API-2000, ESI) at 12.5 eV.

General procedure for the synthesis of 2-mercapto-1-thia-3,3a,10-triaza-pentaleno[1,2-b]naphthalene-4,9-dione, **3**

A mixture of 2,3-dichloronaphthalene-1,4-dione (2.27 g, 0.01 mole) and 5-amino-1,3,4-thiadiazole-2-thiol or its thio ether derivative (1.33 g, 0.01 mole) in acetic acid (20 mL) was refluxed for 8 hr. The reaction mixture was cooled to RT and poured over crushed ice. The solid thus separated was filtered, dried and purified by recrystallization from methanol.

Scheme I

Synthesis of acetic acid 9-acetoxy-2-methylsulfanyl-1-thia-3,3a,10-triaza-pentaleno[1,2-b]naphthalene-4-yl ester, 4

To compound **3b** (0.301 g, 1 mmole) in 10 mL of acetic anhydride, Zn dust (0.5 g), anhydrous powdered sodium acetate (0.1 g) were added and refluxed on a water bath for 6 hr. The reaction mixture was cooled to RT and poured into ice-cold water. The resulting solid was purified by recrystallization from ethanol.

2-Mercapto-1-thia-3,3a,10-triaza-pentaleno[1,2-b]naphthalene-4,9-dione, 3a. Brown solid, yield 92%, decomposes at 160-62°C. IR (KBr): 1157 (C=S) (Ref. 20), 1557 (C=C), 1587 (-C=N-), 1678 (-C=O), 2840 cm⁻¹ (SH weak); ¹H NMR (CDCl₃): δ 1.23 (s, 1H, D₂O exchangeable SH), 7.80 (m, 2H, Ar-H) and 8.20 (m, 2H, Ar-H); MS: *m/z* 287 (MH)⁺. Anal. Calcd for C₁₂H₅N₃O₂S₂: C, 50.16; H, 1.75; N, 14.62; S, 22.32. Found: C, 50.19; H, 1.69; N, 14.65; S, 22.36%.

2-Methylsulfanyl-1-thia-3,3a,10-triaza-pentaleno[1,2-b]naphthalene-4,9-dione, 3b. Light brown solid, yield 89%, decomposes at 145-47°C. IR (KBr): 1138 (C=S), 1560 (C=C), 1587(-C=N-), 1680 cm⁻¹ (-C=O); ¹H NMR (300 MHz, CDCl₃): δ 3.30 (s, 3H, CH₃),

7.90 (m, 2H, Ar-H) and 8.10 (m, 2H, Ar-H); MS: *m/z* 302 (MH)⁺. Anal. Calcd for C₁₃H₇N₃O₂S₂: C, 51.81; H, 2.34; N, 13.94; S, 21.28. Found: C, 51.84; H, 2.31; N, 13.98; S, 21.32%.

2-Ethylsulfanyl-1-thia-3,3a,10-triaza-pentaleno[1,2-b]naphthalene-4,9-dione, 3c. Light brown solid, yield 91%, decomposes at 142-44°C. IR (KBr): 1560 (C=C), 1586 (C=N), 1698 cm⁻¹ (-C=O). Anal. Calcd for C₁₄H₉N₃O₂S₂: C, 53.32; H, 2.88; N, 13.32; S, 20.33. Found: C, 53.38; H, 2.90; N, 13.30; S, 20.36%.

2-Allylsulfanyl-1-thia-3,3a,10-triaza-pentaleno[1,2-b]naphthalene-4,9-dione, 3d. Light brown solid, yield 89%, decomposes at 128-30°C. IR (KBr): 1559 (C=C), 1587 (C=N), 1678 cm⁻¹ (-C=O); ¹H NMR (CDCl₃): δ 3.64 (d, *J*=7 Hz, 2H, S-CH₂), 5.20 (d, *J*=H_X, H_A, *J*=8 Hz, H_A of allyl group), 5.30 (d, *J*=H_X, H_B, *J*=16.8 Hz, H_B of allyl group), 5.98 (m, 1H, H_X), 7.80 (m, 2H, Ar-H) and 8.20 (m, 2H, Ar-H). Anal. Calcd for C₁₅H₉N₃O₂S₂: C, 55.03; H, 2.77; N, 12.84; S, 19.59. Found: C, 55.10; H, 2.80; N, 12.88; S, 19.62%.

2-Benzylsulfanyl-1-thia-3,3a,10-triaza-pentaleno[1,2-b]naphthalene-4,9-dione, 3e. Light brown solid, yield 87%, decomposes at 120-22°C. IR (KBr): 1555 (C=C), 1588 (C=N), 1678 cm⁻¹ (-C=O); ¹H NMR

(CDCl₃): δ 4.50 (s, 2H, S-CH₂), 7.30 (m, 5H, Ar-H), 8.10 (m, 2H, Ar-H) and 8.40 (m, 2H, Ar-H). Anal. Calcd for C₁₉H₁₁N₃O₂S₂: C, 60.46; H, 2.94; N, 11.13; S, 16.99. Found: C, 60.49; H, 2.98; N, 11.17; S, 16.95%.

2-p-Nitrobenzylsulfanyl-1-thia-3,3a,10-triaza-pentaleno[1,2-b]naphthalene-4,9-dione, 3f. Light brown solid, yield 92%, decomposes at 122-24°C. IR (KBr): 1138 (C=S), 1559 (C=C), 1588(-C=N-), 1690 cm⁻¹ (-C=O); ¹H NMR (CDCl₃): δ 4.80 (s, 2H, S-CH₂), 7.2-7.40 (m, 4H, Ar-H), 8.10 (d, J=8.2 Hz, 2H, of *p*-nitrophenyl), 8.38 (d, J=8.2 Hz, 2H, of *p*-nitrophenyl). Anal. Calcd for C₁₉H₁₀N₄O₄S₂: C, 54.02; H, 2.39; N, 13.26; S, 15.18. Found: C, 54.10; H, 2.36; N, 13.30; S, 15.22%.

2-(2-Oxo-2-phenyl-ethylsulfanyl)-1-thia-3,3a,10-triaza-pentaleno[1,2-b]naphthalene-4,9-dione, 3g. Light brown solid, yield 95%, decomposes at 155-57°C. IR (KBr): 1678 (-C=O), 1456 cm⁻¹ (-C=N-); ¹H NMR (CDCl₃): δ 4.70 (s, 2H, S-CH₂), 7.00-7.10 (m, 5H, Ar-H), 7.80 (m, 2H, Ar-H), 8.20 (m, 2H, Ar-H). Anal. Calcd for C₂₀H₁₁N₃O₃S₂: C, 59.25; H, 2.73; N, 10.36; S, 15.82. Found: C, 50.20; H, 2.76; N, 10.31; S, 15.85%.

2-(2-Oxo-2-*p*-tolyl-ethylsulfanyl)-1-thia-3,3a,10-triaza-pentaleno[1,2-b]naphthalene-4,9-dione, 3h. Light brown solid, yield 92%, decomposes at 126-28°C. IR (KBr): 1590 (C=C), 1604 (C=N), 1680 cm⁻¹ (-C=O); ¹H NMR (CDCl₃): δ 2.60 (s, 3H, Ph-CH₃), 4.60 (s, 2H, S-CH₂), 7.05-7.10 (m, 4H, Ar-H), 7.8 (d, J=8.2 Hz, 2H, Ar-H) and 8.1 (d, J=8.2 Hz, 2H, Ar-H). Anal. Calcd for C₂₁H₁₃N₃O₃S₂: C, 60.13; H, 3.12; N, 10.02; S, 15.29. Found: C, 60.16; H, 3.15; N, 10.10; S, 15.32%.

2-[2-(4-Methoxy-phenyl)-2-oxo-ethylsulfanyl]-1-thiaza-[1,2-b]naphthalene-4,9-dione, 3i. Light brown solid, yield 88%, decomposes at 132-34°C. IR (KBr): 1559 (C=C), 1586 (-C=N-), 1669 cm⁻¹ (-C=O); ¹H NMR (CDCl₃): δ 3.90 (s, 3H, O-CH₃), 4.40 (s, 2H, S-CH₂), 7.00-7.10 (m, 4H, Ar-H), 7.65 (d, J=8.2 Hz, 2H, Ar-H), 7.90 (d, J=8.2 Hz, 2H, Ar-H). Anal. Calcd for C₂₁H₁₃N₃O₄S₂: C, 57.92; H, 3.01; N, 9.65; S, 14.73. Found: C, 57.95; H, 3.00; N, 9.69; S, 14.77%.

2-[2-(4-Chloro-phenyl)-2-oxo-ethylsulfanyl]-1-thiaza-[1,2-b]naphthalene-4,9-dione, 3j. Light brown solid, yield 87%, decomposes at 145-47°C. IR (KBr): 1138 (C=S), 1560 (C=C), 1587(-C=N-), 1680 cm⁻¹ (-C=O); ¹H NMR (CDCl₃): δ 4.80 (s, 2H, S-CH₂), 7.00-7.10 (m, 4H, Ar-H), 7.9 (d, J=8 Hz, 2H, Ar-H),

8.2 (d, J=8 Hz, 2H, ArH). Anal. Calcd for C₂₀H₁₀ClN₃O₃S₂: C, 54.61; H, 2.29; N, 9.55; S, 14.58. Found: C, 54.61; H, 2.31; N, 9.59; S, 14.61%.

2-[2-(4-Bromo-phenyl)-2-oxo-ethylsulfanyl]-1-thiaza-[1,2-b]naphthalene-4,9-dione, 3k. Light brown solid, yield 90%, decomposes at 158-60°C. IR (KBr): 1556 (C=C), 1589, (C=N), 1679 cm⁻¹ (C=O); ¹H NMR (CDCl₃): δ 4.60 (s, 2H, S-CH₂), 7.05-7.1 (m, 4H, Ar-H), 7.90 (d, J=8 Hz, 2H, ArH), 8.2 (d, J=8 Hz, 2H, ArH). Anal. Calcd for C₂₀H₁₀BrN₃O₃S₂: C, 49.60; H, 2.08; N, 8.68; S, 13.24. Found: C, 49.62; H, 2.10; N, 8.64; S, 13.25%.

Acetic acid 9-acetoxy-2-methylsulfanyl-1-thia-3,3a,10-triaza-pentaleno[1,2-b]naphthalene-4-yl ester, 4. Yellow solid, yield 85%, decomposes at 208-10°C. IR (KBr): 1444(-C=N-), 1577 (C=C), 1771 cm⁻¹ (-C=O); ¹H NMR (CDCl₃): δ 2.10 (s, 3H, S-CH₃), 2.50 (s, 6H, -OCOCH₃), 7.60 (m, 2H, Ar-H) and 7.80 (m, 2H, Ar-H); MS: *m/z* 388 (M+H)⁺. Anal. Calcd for C₁₇H₁₃N₃O₄S₂: C, 52.70; H, 3.38; N, 10.85; S, 16.55. Found: C, 52.65; H, 3.40; N, 10.81; S, 16.51%.

Conclusions

In summary, a mild and single step method for preparation of the title compounds in high yield has been developed without application of any catalyst. The testing of bioactivity of these compounds is in progress.

Acknowledgement

Financial support from UGC, New Delhi for the sanction of the project [F.No. 32-201/2006 (SR)] is gratefully acknowledged. The authors also thank Director, NIT Warangal for providing research facilities.

References

- 1 Pratt Y T & Drake N L, *J Am Chem Soc*, 8, **1960**, 1155.
- 2 Ryu C K, Kang H Y, Yi Y J, Shin K H & Lee B H, *Bioorg Med Chem Lett*, 10, **2000**, 1589.
- 3 Ryu C K, Song E H, Shim J Y, You H J, Choi K U, Choi I K, Lee E Y & Chae M J, *Bioorg Med Chem Lett*, 13, **2003**, 17.
- 4 Ryu C K, Choi K U, Shim J Y, You H J, Choi I H & Chae M J, *Bioorg Med Chem*, 11, **2003**, 4003.
- 5 Lin A J, Cosby L P & Sartorelli A C, *Cancer Chemother Rep*, 4, **1974**, 23.
- 6 Driscoll J S, Hazard Jr G F, Wood Jr H B & Golden A, *Cancer Chemother Rep*, 24, **1974**, 1.
- 7 Skibo E B, Islam I, Heileman M J & Schulz W G, *J Med Chem*, 37, **1994**, 78.
- 8 Zee-Cheng R K, Podrebarac E G, Menon C S & Cheng C C, *J Med Chem*, 22, **1979**, 501.
- 9 Zee-Cheng R K & Cheng C C, *J Med Chem*, 21, **1978**, 291.

- 10 Denny W A & Bagulet B C, in *Molecular Aspects of Anticancer Drug-DNA Interactions*, 2nd edn, edited by M J Waring and S Neidle (Macmillan, London) **1994**, pp. 270-311.
- 11 Pommier Y, Capranico G, Orr A & Kohn K W, *Nucleic Acids Res*, **19**, **1991**, 5973.
- 12 Fosse P, Rene B, Le Bret M C, Paoletti C & Saucier J M, *Nucleic Acids Res*, **19**, **1991**, 2861.
- 13 Lin A J, Lillis B J & Sartorelli A C, *J Med Chem*, **18**, **1975**, 917.
- 14 Yamashita Y, Kawada S, Fujii N & Nakano H, *Cancer Res*, **50**, **1990**, 5841.
- 15 Beall H D, Siegel D, Liu Y, Bolton E M, Gibson N W & Ross D, *Biochem Pharmacol*, **51**, **1996**, 645.
- 16 Rao M S, Rajeswar Rao V & Padmanabha Rao T V, *Organic Prep and Proced Int*, **18**, **1986**, 104.
- 17 Rajeswar Rao V, Rao M S & Padmanabha Rao T V, *Indian J Chem*, **32B**, **1993**, 365.
- 18 Jan Sandstrom, *Acta Chem Scand*, **15**, **1981**, 1295.
- 19 Francesca C, Donato P, Maddalena G, Antonella L, Vicenzo P & Mario B, *J Med Chem*, **44**, **2001**, 931.
- 20 Rajeswar Rao V, Srimanth K & Vijaya Kumar P, *Indian J Heterocycl Chem*, **32B**, **1993**, 365.